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Abstract

We study the stochastic parallel dynamics of Ising spin systems defined on
finitely connected directed random graphs with arbitrary degree distributions,
using generating functional analysis. For fully asymmetric graphs the dynamics
of the system can be completely solved, due to the asymptotic absence of loops.
For arbitrary graph symmetry, we solve the dynamics exactly for the first few
time steps, and we construct approximate stationary solutions.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

Problems defined on finitely connected (partially) random graphs have been studied intensively
in various fields of science. Examples from physics are models of spin glasses and related
magnetic systems [1–10]. A second field is information theory and computer science,
where calculations involving finitely connected random graphs emerge in the context of
error correcting codes [11–18], lossy data compression [19–26], CDMA multi-user detection
[27–29] and combinatorial optimization [30–34]. In biology and the social and economical
sciences one finds processes on finitely connected random graphs in the context of neural
[35, 36] as well as proteomic and gene regulation networks, and small world models [37–40].
In all these fields, techniques of statistical mechanics have been decisive in making progress.
The initial focus of research has been on establishing the equilibrium properties of processes on
finitely connected random graphs, mainly by applying replica theory and the cavity method. In
a second wave also the dynamical properties of processes on finitely connected random graphs
have begun to be investigated in detail, see e.g. [41–50]. In real-world applications involving
finitely connected random graphs, there are many situations in which it is essential that
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dynamical properties be understood quantitatively, and this is especially true for technological
applications, such as the decoding of error correcting codes and the detection dynamics of
CDMA multi-user detectors, and for biological information processing systems where the
absence of detailed balance rules out equilibrium methods.

In most of the problems described above, the dynamical variables and their interactions
are represented as nodes and edges of finitely connected graphs, respectively. The simplest
such graphs are Poissonian ones, i.e. sparse Erdös–Rényi graphs with a Poissonnian degree
distribution in the thermodynamic limit. However, the broad spectrum of problems to be
understood demands dynamical techniques that are able to treat more general random graph
ensembles. The dynamics of processes on graphs drawn from ensembles with arbitrary
degree distributions have so far been studied using dynamical replica theory [45, 48] and the
cavity method [50]. One particular dynamical formalism, which enjoys the appeal of full
exactness (if it applies), is the generating functional method of De Dominicis [51]. This
method was first used by Hatchett et al to investigate the parallel dynamics of bond-disordered
Ising spin systems on finitely connected random graphs [44], but their study was limited to
finitely connected Poissonian random graphs. In information theoretic problems and modeling
real-world systems, there are many examples which are characterized by finitely connected
random graphs with specific degree distributions. For example, a power-law distribution
is often utilized to discuss ‘small-world’ networks. In the framework of error correcting
codes, a one-point distribution and specific (complex) degree distributions which give higher
performance are applied.

In this paper we generalize the analysis of [44]: we use generating functional techniques
to analyze the parallel stochastic dynamics of Ising spin models defined on finitely connected
random graphs, which are drawn from ensembles in which the degree distributions can be
chosen arbitrarily (including a power-low distribution, a one-point distribution and so on).
We first derive general dynamical order parameter equations, which give a transparent exact
description of collective processes in finitely connected Ising systems. We then consider the
simplest case of fully asymmetric finitely connected random graphs. Here the theory acquires
a simple form due to the absence of the loops, and the dynamics becomes very simple. Away
from fully asymmetric graphs, we calculate the first few time steps exactly, and construct (for
fully symmetric graphs) approximate equilibrium solutions. To confirm the validity of our
theory, we present numerical results for some typical conditions and typical graph ensembles;
although our theory can handle arbitrary degree distributions, our examples are mostly regular
random graphs (for simplicity).

2. Model definitions

Let us consider a system of N Ising-type spins placed on the edges of a finitely connected
directed random graph with an as yet arbitrary degree distribution. The dynamics are given
by a Markov process which represents synchronous stochastic spin alignment to local fields.
The probability Pt(σ) of finding the microscopic state σ = (σ1, . . . , σN) ∈ {−1, 1}N at time
t can be written as

Pt(σ) =
∑

σ′∈{−1,1}N
Wt−1[σ|σ′]Pt−1(σ

′), (1)

Wt−1[σ|σ′] =
N∏

i=1

eβσihi (σ
′,t−1)

2 cosh[βhi(σ′, t − 1)]
(2)

2
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where hi(σ, t) are local fields, defined as

hi(σ, t) = 1

c

N∑
j �=i

cij Jij σj + θi(t). (3)

They involve a connectivity matrix c = {cij } ∈ {0, 1}N×N , whose entries specify which spins
interact, and define a (generally directed) random graph. The parameters θi(t) ∈ R are time-
dependent external fields, and c > 0. The bond strengths Jij are symmetric, i.e. Jij = Jji ,
and are drawn independently from a bond distribution p̃(J ). We define the degree ki of node
i (i.e. the number of links to the node i) as

ki =
N∑

j=1

cij (4)

(this would often be called the ‘in-degree’). The entries of the matrix c are chosen randomly
according to the following connectivity distribution, in which all N degrees ki are constrained:

p̂(c) =
( ∏N

i=1

∏N
j>i p̂(cij )p̂(cji |cij )

)( ∏N
i=1 δki ,

∑N
j=1 cij

)
∑

c′
( ∏N

i=1

∏N
j>i p̂(c′

ij )p̂(c′
ji |c′

ij )
)( ∏N

i=1 δki ,
∑N

j=1 c′
ij

) , (5)

where

p̂(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0, (6)

p̂(cji |cij ) = εδcji ,cij
+ (1 − ε)

[
c

N
δcji ,1 +

(
1 − c

N

)
δcji ,0

]
, (7)

(with the Kronecker symbol δmn = 1 if m = n, and δmn = 0 otherwise). All ki are randomly
and independently drawn from a given degree distribution p(k), with

∑
k kp(k) = c, so

c = limN→∞ 1
N

∑N
i=1

∑N
j=1 cij . This procedure generates an ensemble of random graphs,

with a prescribed degree distribution p(k) and a parameter ε that controls the symmetry of
the graph. For ε = 1, the connectivity becomes symmetric. In the remainder of this paper we
will write averages over the bond variables {Jij } as 〈· · ·〉J = ∫

dJ p̃(J )(· · ·) and averages over
both the microscopic graph and bond variables, i.e. over {cij , Jij } as [· · ·].

3. Generating functional analysis

3.1. The disorder-averaged generating functional

We follow the approach of [44], but apply it to the present generalized spin model. We assume
that the macroscopic behavior of our system depends only on the statistical properties of the
disorder. The joint distribution of any trajectory σ(0), . . . ,σ(tm) is given by products of the
individual transition probabilities of the Markov chain:

P [σ(0), . . . ,σ(tm)] = p0[σ(0)]
tm−1∏
t=0

W [σ(t + 1)|σ(t)], (8)

where p0[σ(0)] represents the initial conditions. The generating functional Z[ψ] for the
process is now defined as [51]

Z[ψ] =
〈

exp

[
−i

N∑
i=1

tm∑
t=0

ψi(t)σi(t)

]〉
(9)

3
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where 〈· · ·〉 denotes averaging over the microscopic process, namely

〈· · ·〉 =
∑

σ(0)∈{−1,1}N
· · ·

∑
σ(tm)∈{−1,1}N

p[σ(0), . . . ,σ(tm)](· · ·), (10)

and ψ = (ψi(t)) denote the generating fields. We isolate the local fields at all stages by
inserting appropriate integrals over integral representations of the Dirac delta function:

1 =
∫

{dh dĥ}
N∏

i=1

tm−1∏
t=0

exp

⎡
⎣iĥi(t)

⎛
⎝hi(t) − 1

c

N∑
j �=i

cij Jij σj (t) − θi(t)

⎞
⎠

⎤
⎦ , (11)

where {dh dĥ} = ∏N
i=1

∏tm−1
t=0 [dhi(t) dĥi(t)/2π ]. The generating functional then takes the

form

Z[ψ] =
∫

{dh dĥ}
∑
σ(0)

· · ·
∑
σ(tm)

p0[σ(0)]exp

⎡
⎣− i

c

N∑
i=1

tm−1∑
t=0

ĥi(t)

N∑
j �=i

cij Jij σj (t)

⎤
⎦

×
N∏

i=1

tm−1∏
t=0

eiĥi (t)[hi(t)−θi (t)]−iψi(t)σi (t)+βσi (t+1)hi (t)−ln 2 cosh[βhi(t)]. (12)

Hereafter, we will change our notation from σ(t) = (σ1(t), . . . , σN(t)) (the N-spin
configuration at time t) to σi = (σi(0), . . . , σi(tm)) (the path taken from t = 0 to t = tm
by spin i). Similarly, we define single-site paths for external, local and conjugate fields,
namely θi = (θi(0), . . . , θi(tm)), ĥi = (ĥi(0), . . . , ĥi(tm)), etc.

Using the integral form of the Kronecker delta to represent the degree constraints

δki ,
∑N

j=1 cij
=

∫ 2π

0

dωi

2π
exp

⎡
⎣iωi

⎛
⎝ki −

N∑
j=1

cij

⎞
⎠

⎤
⎦ (13)

the term in (12) containing the disorder {cij , Jij } becomes

exp

⎡
⎣− i

c

N∑
i=1

tm−1∑
t=0

ĥi(t)

N∑
j �=i

cij Jij σj (t)

⎤
⎦

= 1

Zc

(
N∏

i=1

∫
dωi

2π
eiωiki

)
exp

[
c

2N

N∑
i=1

N∑
j=1

〈ε e− iJ
c

(σi ·ĥj +σj ·ĥi )−i(ωi+ωj )

+ (1 − ε) e− iJ
c

σi ·ĥj −iωj + (1 − ε) e− iJ
c

σj ·ĥi−iωi + ε − 2〉J
]
, (14)

where Zc denotes the normalization constant of the connectivity distribution p̂(c) in (5),
i.e. Zc = ∑

c

( ∏N
i=1

∏N
j>i p̂(cij )p̂(cji |cij )

)( ∏N
i=1 δki ,

∑N
j=1 cij

)
. Details on the calculation

of (14) can be found in appendix A. To achieve site factorization we choose factorized
homogeneous initial conditions, i.e. p0[σ(0)] = ∏

i p0[σi(0)], and we introduce the following
order parameter functions:

P(σ, ĥ) = 1

N

N∑
i=1

δσ,σi
δ(ĥ − ĥi ), (15)

Q(σ, ĥ) = 1

N

N∑
i=1

δσ,σi
δ(ĥ − ĥi ) e−iωi . (16)
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It should be noted that one could also have used the order parameter function R(σ, ĥ, ω) =
1
N

∑N
i=1 δσ,σi

δ(ĥ − ĥi )δ(ω − ωi) to achieve site factorization in the generating functional.
The reason for us to work with (15) and (16) is that the latter will have transparent
physical interpretations. We determine the initial state σi(0) according to the distribution
p0[σi(0)] = 1

2 [1 + σi(0)m(0)], where m(0) denotes the initial magnetization. To introduce
the two-order parameter functions in the generating functional, we use the integral form of
Dirac’s delta function and insert

1 =
∫

{dP dP̂ } exp

[
iN

∑
σ

∫
dĥ P̂ (σ, ĥ)

(
P(σ, ĥ) − 1

N

N∑
i=1

δσ,σi
δ(ĥ − ĥi )

)]
, (17)

1 =
∫

{dQ dQ̂} exp

[
iN

∑
σ

∫
dĥ Q̂(σ, ĥ)

(
Q(σ, ĥ) − 1

N

N∑
i=1

δσ,σi
δ(ĥ − ĥi ) e−iωi

)]
,

(18)

where {dP dP̂ } = ∏
σ,ĥ[dP(σ, ĥ)dP̂ (σ, ĥ)N/2π ], and we choose the equivalent definition

for the short-hand {dQ dQ̂}. We then have

Z[ψ] = 1

Zc

∫
{dP dP̂ dQ dQ̂} eN
[{P,P̂ ,Q,Q̂}], (19)

where


[{P, P̂ ,Q, Q̂}] = c(ε−2)

2
+

c

2

∑
σ,σ′

∫
dĥ dĥ

′
A(σ, ĥ;σ′, ĥ

′
) + L[{P̂ , Q̂,θ}]

+ i
∑
σ

∫
dĥ P̂ (σ, ĥ)P (σ, ĥ) + i

∑
σ

∫
dĥQ̂(σ, ĥ)Q(σ, ĥ) (20)

with

A(σ, ĥ;σ′, ĥ
′
) = Q(σ, ĥ)Q(σ′, ĥ

′
)〈ε e− iJ

c
(σ·ĥ′

+σ′ ·ĥ)〉J
+ P(σ, ĥ)Q(σ′, ĥ

′
)〈(1 − ε) e− iJ

c
σ·ĥ′ 〉J

+ Q(σ, ĥ)P (σ′, ĥ
′
)〈(1 − ε) e− iJ

c
σ′ ·ĥ〉J (21)

and

L[{P̂ , Q̂,θ}] = 1

N

N∑
i=1

ln
∑
σ

p0[σ(0)]
∫ (

tm−1∏
t=0

dh(t) dĥ(t)

2π

eiĥ(t)[h(t)−θi (t)]+βσ(t+1)h(t)

2 cosh[βh(t)]

)

× e−iP̂ (σ,ĥ) (−i)ki

ki!
[Q̂(σ, ĥ)]ki . (22)

In the above expressions we have neglected those terms that will vanish for N → ∞, and
we have removed the now redundant generating fields ψ. Upon applying the law of large
numbers, the term L[{P̂ , Q̂,θ}] simplifies to

L[{P̂ , Q̂,θ}] =
∞∑

k=0

p(k) ln
∑
σ

p0[σ(0)]
∫ (

tm−1∏
t=0

dh(t) dĥ(t)

2π

eiĥ(t)[h(t)−θ(t)]+βσ(t+1)h(t)

2 cosh[βh(t)]

)

× e−iP̂ (σ,ĥ) (−i)k

k!
[Q̂(σ, ĥ)]k. (23)

Functional extremization of 
[{P, P̂ ,Q, Q̂}] with respect to the kernels P, P̂ ,Q and Q̂, i.e.
working out the equations δ
/δP = δ
/δP̂ = δ
/δQ = δ
/δQ̂ = 0, gives the following
functional saddle-point equations:

5
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P̂ (σ, ĥ) = ic
∑
σ′

∫
dĥ

′
Q(σ′, ĥ

′
)
〈
(1 − ε) e− iJ

c
σ·ĥ′ 〉

J
, (24)

P(σ′, ĥ
′
) =

∞∑
k=0

p(k)〈δσ,σ′δ(ĥ − ĥ′)〉θ,k, (25)

Q̂(σ, ĥ) = ic
∑
σ′

∫
dĥ

′
P(σ′, ĥ

′
)
〈
(1 − ε) e− iJ

c
σ′·ĥ〉

J

+ ic
∑
σ′

∫
dĥ

′
Q(σ′, ĥ

′
)
〈
ε e− iJ

c
(σ·ĥ′

+σ′ ·ĥ)
〉
J
, (26)

Q(σ′, ĥ
′
) =

∞∑
k=1

kp(k)

〈
δσ,σ′δ(ĥ − ĥ

′
)

−iQ̂(σ, ĥ)

〉
θ,k

, (27)

with a measure 〈· · ·〉θ,k , which is defined as

〈f (σ, ĥ)〉θ,k =
∑

σ

∫
dĥ f (σ, ĥ)Mk(σ, ĥ|θ)∑
σ

∫
dĥ Mk(σ, ĥ|θ)

, (28)

Mk(σ, ĥ|θ) = e−iP̂ (σ,ĥ)[−iQ̂(σ, ĥ)]kp0[σ(0)]
tm−1∏
t=0

∫
dh(t)

2π

eiĥ(t)[h(t)−θ(t)]+βσ(t+1)h(t)

2 cosh[βh(t)]
. (29)

Performing an inverse Fourier transformation of P(σ, ĥ) and Q(σ, ĥ) gives, respectively,

P(σ|θ′) ≡
∫

dĥ e−iθ′ ·ĥP(σ, ĥ) =
∞∑

k=0

p(k)〈δσ,σ′ 〉θ+θ′,k, (30)

Q(σ|θ′) ≡
∫

dĥ e−iθ′ ·ĥQ(σ, ĥ) =
∞∑

k=1

kp(k)

〈
δσ,σ′

−iQ̂(σ, ĥ)

〉
θ+θ′,k

. (31)

The order parameter P(σ|θ′) is the disorder-averaged probability of finding a single-spin
trajectory σ with modified external fields θ + θ′ (consisting of the original external fields θ
and the supplement θ′). We will consider the meaning of the order parameter Q(σ|θ′) later.
The present situation is similar to that in the related studies [41, 44]. In terms of P(σ|θ′) and
Q(σ|θ′), the order parameter functions P̂ (σ, ĥ) and Q̂(σ, ĥ) can be rewritten as

P̂ (σ, ĥ) = ic(1 − ε) (32)

Q̂(σ, ĥ) = ic(1 − ε)
∑
σ′

〈
e− iJ

c
σ′ ·ĥP(σ′|0)

〉
J

+ icε
∑
σ′

〈
e− iJ

c
σ′·ĥQ

(
σ′

∣∣∣∣Jc σ

)〉
J

. (33)

Here we have also used the fact that P(σ|θ′) and Q(σ|θ′) are both normalized with respect
to summation over σ, a property which is demonstrated in the next section.

After substituting (32), (33) into (30), (31) and integrating over ĥ, we finally arrive at the
following compact closed-form equations:

P(σ|θ′) =
∞∑

k=0

p(k)

(
k∏

�=1

∫
dJ� p̃(J�)

∑
σ�

[
εQ

(
σ�

∣∣∣∣1

c
J�σ

)
+ (1−ε)P (σ�|0)

])

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t + 1)

[
θ(t) + θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

])
2 cosh

(
β
[
θ(t) + θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

]) (34)

6
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Q(σ|θ′) =
∞∑

k=0

k+1

c
p(k+1)

(
k∏

�=1

∫
dJ� p̃(J�)

∑
σ�

[
εQ

(
σ�

∣∣∣∣1

c
J�σ

)
+ (1−ε)P (σ�|0)

])

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t + 1)

[
θ(t) + θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

])
2 cosh

(
β
[
θ(t) + θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

]) . (35)

The equation for the order parameter P(σ|θ′) contains the degree distribution in its bare form
p(k). The equation for Q(σ|θ′), on the other hand, involves the deformed degree measure
k+1
c

p(k + 1). This is the only difference between the two expressions. These above two
equations are closed and exact and completely general; they cannot be simplified further
without making specific parameter choices or assumptions.

In the case of the Poissonian graph [44], the result looks like being represented in terms
of only the local field distribution. However, in general both the local field and the cavity
field are needed to represent the macroscopic dynamics. In the next section, we discuss the
meaning of equations (34) and (35) in detail.

3.2. Physical meaning of order parameter functions and interpretation of closed-form
equations

Starting from (15) and (16) and using manipulations similar to those used in deriving (22), we
can infer the physical meaning of P(σ|θ′) and Q(σ|θ′) at the saddle point. This gives

P(σ|θ′)|saddle = 〈P(σ|θ′)〉∗ = 1

N

N∑
i=1

〈δσ,σi
〉∗

∣∣∣∣
θi→θi+θ′

, (36)

Q(σ|θ′)|saddle = 〈Q(σ|θ′)〉∗ = 1

N

N∑
i=1

〈δσ,σi
〉∗

∣∣∣∣
ki→ki−1,θi→θi+θ′

, (37)

where the brackets 〈· · ·〉∗ denote evaluation of the argument for the microscopic process (1),
i.e.

〈· · ·〉∗ =
∫ {dP dP̂ dQ dQ̂} eN
[{P,P̂ ,Q,Q̂}](· · ·)∫ {dP dP̂ dQ dQ̂} eN
[{P,P̂ ,Q,Q̂}] . (38)

Details on the derivation of (36), (37) can be found in appendix B. We may now conclude that
Q(σ|θ′) represents the disorder-averaged probability of finding a single-spin trajectory σ in
the system from which one site is removed randomly, and in which the external field paths of
spins i previously connected to the removed site are modified to θi + θ′. Similarly, P(σ|θ′)
represents the disorder-averaged probability of finding a single-spin trajectory σ in the system
in which the external field paths of a randomly drawn site are modified to θi + θ′ (without
removing sites).

Our present general equations (34), (35) have a clearer interpretation than those obtained
for strictly Poissonian graphs [44]; in the latter graphs the distinction between (36) and (37)
is invisible as a consequence of the property k+1

c
p(k + 1) = p(k) of the Poissonian degree

distribution. To calculate the probability of a single-site path σ, a random number k is firstly
drawn from the degree distribution p(k). This parameter k denotes the number of sites that
contribute to the field at the central site. All k associated spin paths of the attached sites
σ1, . . . ,σk are sampled from their respective distributions εQ

(
σ�

∣∣ 1
c
J�σ

)
+ (1−ε)P (σ�|0),

which depend on the central site’s path σ. By definition, each site � contributes to the field of
the central site. Hence with the probability ε the central site will contribute 1

c
J�σ to the field

7
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σ

σ1

σ2 σ3

εQ(σ1
1
c J1σ)

+(1−ε)P (σ1⏐0)

P (σ 0)

εQ(σ2
1
c J2σ)

+(1−ε)P (σ2 0)

εQ(σ3
1
c J3σ)

+(1−ε)P (σ3 0)

⏐

⏐

⏐

⏐

⏐

⏐

Figure 1. Illustration of the interpretation of our closed-form order parameter equations, showing
how the measure for the spin paths σ of a central site with three incoming links is related to
the measures of the connected sites under modified conditions. Each connected site has, with
probability ε, an incoming link from the central site. For N → ∞ our graphs are locally tree-like;
hence the three sites i = 1, 2, 3 are mutually correlated only via the central site.

paths of site �, hence the term εQ
(
σ�

∣∣ 1
c
J�σ

)
in the path measure for �; with the probability

1−ε the central site will not contribute to the fields of site �, hence the term (1−ε)P (σ�|0)

in the path measure for �. This process makes it possible to take into account dynamically
the effective retarded self-interaction induced by connection symmetry. Figure 1 shows a
schematic illustration of this interpretation.

Equations (36) and (37) show explicitly that the order parameters P(σ|θ′) and Q(σ|θ′) are
normalized, i.e.

∑
σ P(σ|θ′) = 1 and

∑
σ Q(σ|θ′) = 1. We have used this property to derive

(32) and (33). In the special case of Poissonian graphs, i.e. graphs with p(k) = e−cck/k!, the
degree distribution obeys

k + 1

c
p(k + 1) = p(k) (39)

and hence one always has P(σ|θ′) = Q(σ|θ′). As a consequence our two closed-form order
parameter equations reduce to a single closed equation:

P(σ|θ′) =
∞∑

k=0

e−cck

k!

(
k∏

�=1

∫
dJ� p̃(J�)

∑
σ�

[
εP

(
σ�

∣∣ J�

c
σ

)
+ (1−ε)P (σ�|0)

])

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t+1)

[
θ(t)+θ ′(t)+ 1

c

∑k
�=1J�σ�(t)

])
2 cosh

(
β
[
θ(t)+θ ′(t)+ 1

c

∑k
�=1J�σ�(t)

]) . (40)

and we thereby recover the results of [44].

4. Fully asymmetric connectivity

4.1. The reduced theory

We first consider the case of fully asymmetric connectivity, i.e. ε = 0. Here the situation is
mathematically almost identical to that case of the Poissonian graph [44]. Equation (34) once
more closes in terms of P(σ|0), and we find

8
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P(σ|0) =
∞∑

k=0

p(k)

(
k∏

�=1

∫
dJ� p̃(J�)

∑
σ�

P (σ�|0)

)

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t+1)

[
θ(t)+ 1

c

∑k
�=1 J�σ�(t)

])
2 cosh

(
β
[
θ(t)+ 1

c

∑k
�=1 J�σ�(t)

]) . (41)

Summing both sides of (41) over σ, except for the entry σ(t + 1), leads us to single-time spin
probabilities P(σ(t + 1)|0), which are marginal probabilities of the full path measure P(σ|0):

P(σ(t + 1)|0) =
∞∑

k=0

p(k)

⎛
⎝ k∏

�=1

∫
dJ� p̃(J�)

∑
σ�(t)

P (σ�(t)|0)

⎞
⎠

× exp
(
βσ(t+1)

[
θ(t)+ 1

c

∑k
�=1 J�σ�(t)

])
2 cosh

(
β
[
θ(t)+ 1

c

∑k
�=1 J�σ�(t)

]) . (42)

It should be noted that the probabilities P(σ(t +1)|0) depend only on P(σ(t)|0), for any t. This
means that there is no effective retarded self-interaction, i.e. there is no effective short loop in
the graph with fully asymmetric connectivity. Using the following two general identities:

P(σ(t)|0) = 1
2 [1 + σ(t)m(t)] (43)

P(σ(t), σ (t ′)|0) = 1
4 [1 + m(t)σ (t) + m(t ′)σ (t ′) + C(t, t ′)σ (t)σ (t ′)], (44)

both the effective single spin magnetization m(t) = 〈σ(t)〉 and the covariances C(t, t ′) =
〈σ(t)σ (t ′)〉 can then be written as closed-form iterative expressions respectively:

m(t + 1) =
∞∑

k=0

p(k)

(
k∏

�=1

∑
σ�

1

2
[1+σ�m(t)]

) 〈
tanh

(
β

[
θ(t)+

1

c

k∑
�=1

J�σ�

])〉
J1,...,Jk

, (45)

C(t + 1, t ′ + 1) =
∞∑

k=0

p(k)

⎛
⎝ k∏

�=1

∑
σ�,σ

′
�

1

4
[1 + m(t)σ� + m(t ′)σ ′

l + C(t, t ′)σ�σ
′
�]

⎞
⎠

×
〈

tanh

(
β

[
θ(t) +

1

c

k∑
�=1

J�σ�

])
tanh

(
β

[
θ(t) +

1

c

k∑
�=1

J�σ
′
�

])〉
J1,...,Jk

,

(46)

from (42), with m(0) following from the initial conditions. Figure 2 shows a comparison
between theory and numerical simulations with respect to the time evolution of the
magnetization m(t) on a regular asymmetric sparse graph (ε = 0) with the degree distribution
p(k) = δk,c. The theoretical results are in excellent agreement with the numerical simulations.
When taking the limit of c → ∞, the internal fields vk(t) = 1

c

∑k
l=1 J�σ� simplify to

vk(t) → 〈J 〉J m(t). In this limit we therefore have

m(t + 1) = tanh(β[θ(t) + 〈J 〉J m(t)]), (47)

C(t, t ′) = m(t)m(t ′). (48)

In the absence of external fields, i.e. for θ(t) = 0, a P→ F transition occurs at β = βc, which
is given by βc〈J 〉J = 1. This situation is identical to that described in [44].
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Figure 2. Comparison between theory and numerical simulations with respect to the time evolution
of the magnetization m(t) on a asymmetric (ε = 0) finitely connected random graph with a degree
distribution p(k) = δk,c and zero external fields θ(t) = 0. The initial magnetization is m(0) = 0.4.
Squares: theoretical results for c = 3, β = 3 and η ∈ {0.4, 0.8}. Circles: simulation results for
N = 105 spins (averaged over ten runs).

4.2. Time evolution and phase diagrams

We here specialize further and consider the physics described by the ε = 0 equations (45),
(46) for the case of having binary random bonds:

p̃(J ′) = 1
2 (1 + η)δ(J ′ − J ) + 1

2 (1−η)δ(J ′ + J ), (49)

with η ∈ [−1, 1]. For such bond statistics the iterative equation (45) for the magnetization
reduces to

m(t + 1) =
∞∑

k=0

p(k)

k∑
r=0

(
k

r

) (
1 + ηm(t)

2

)r (
1 − ηm(t)

2

)k−r

tanh

(
β

[
θ(t) +

J

c
(2r − k)

])
.

(50)

For zero external fields, i.e. θ(t) = 0 for all t, and assuming that a stationary state exists,
the stationary state magnetizations are given as the solutions of the fixed-point equation
m = F(m), with

F(m) =
∞∑

k=0

p(k)

k∑
r=0

(
k

r

) (
1 + ηm

2

)r (
1 − ηm

2

)k−r

tanh

(
βJ (2r − k)

c

)
. (51)

The map F(m) is anti-symmetric, and hence always has the trivial fixed point m = 0. This
fixed point is unique for small η, whereas for larger η non-trivial fixed points bifurcate
(provided the inverse temperature β is sufficiently large), marking a transition P → F from a
paramagnetic to a ferro-magnetic state. To determine whether this transition is continuous,
and if so find the critical value ηc, we can expand F(m) in powers of m, giving

F(m) = ηm

∞∑
k=0

p(k)

k∑
r=0

(
k

r

)
2r − k

2k
tanh

[
βJ (2r − k)

c

]
+

1

6
(ηm)3

∞∑
k=0

p(k)

k∑
r=0

(
k

r

)

× (2r − k)(4r2 − 4kr + k2 − 3k + 2)

2k
tanh

[
βJ (2r − k)

c

]
+ O(m5). (52)

10
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Figure 3. Phase diagram in the (η, 1/(βJ )) plane of the ±J random bond model on a asymmetric
(ε = 0) sparse graph with the degree distribution p(k) = δk,c and zero external fields θ(t) = 0.
Solid lines: P → F transition lines for c ∈ {3, 10, 30, 60}. Dashed line: P → F transition line at
1/(βJ ) = η corresponding to c = ∞.

The cubic term can be confirmed to be non-positive. Therefore, there is no evidence for a
discontinuous transition, and the critical value ηc can be obtained as

ηc

∞∑
k=0

p(k)

k∑
r=0

(
k

r

)
2r − k

2k
tanh

[
β

c
J (2r − k)

]
= 1. (53)

In a similar way we can inspect the existence and location of a spin-glass phase. Putting
m(t) = 0 and θ(t) = 0 in (46), one finds that the time-translation invariant covariance
q = limτ→∞ limt→∞ C(t + τ, t) {is} given as the solutions of q = G(q), with

G(q) =
∞∑

k=0

p(k)

⎛
⎝ k∏

�=1

∑
σ�,σ

′
�

1

4
[1 + σ�σ

′
�q]

⎞
⎠ tanh

[
βJ

c

k∑
�=1

σ�

]
tanh

[
βJ

c

k∑
�=1

σ ′
�

]
. (54)

It can be confirmed that G(0) = 0,G(q) � 1 and d2G(q)/dq2 > 0 for q ∈ [0, 1]. Hence
G(q) < q for q ∈ (0, 1]. Since q = G(q) has no non-trivial solutions, no spin-glass phase
exists for ε = 0. Figure 2 shows a comparison between theory and numerical simulations
with respect to the time evolution of the magnetization m(t) on a regular asymmetric sparse
graph (ε = 0) with the degree distribution p(k) = δk,c and zero external fields θ(t) = 0.
The theoretical results are in excellent agreement with the numerical simulations. Figure 3
shows the resulting phase diagram in the (η, 1/βJ ) plane, for the example of a regular sparse
graph with the degree distribution p(k) = δk,c and zero external fields θ(t) = 0. For nonzero
temperatures, the c = 2 regular sparse graph has only a paramagnetic phase (with a zero
temperature P → F transition only for η = 1).

5. Arbitrary connectivity symmetry

5.1. Numerical solution for short times

Equations (34) and (35) are closed and exact, but highly non-trivial, and it is not obvious that
they can be simplified further. However, if the bond distribution is of the form (49), the space

11
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Figure 4. Comparison between theory and numerical simulations with respect to the time evolution
of the magnetization m(t) on a symmetric (ε = 1) finitely connected random graph with a degree
distribution p(k) = δk,c . The initial magnetization is m(0) = 0.4. Squares: theoretical results for
c = 3, β = 3 and η = 0.4. Circles: simulation results for N = 105 spins (averaged over ten runs).

on which our equations are defined at least becomes finite dimensional. In that particular case
we can achieve closure for the following reduced order parameters:

P(σ) = P(σ|0), Q(σ|σ′) = Q

(
σ

∣∣∣∣Jc σ′
)

, (55)

since from equations (34), (35) one can extract

P(σ) =
∞∑

k=0

p(k)

( k∏
�=1

∑
τ�=±1

1

2
[1 + ητ�]

∑
σ�

[εQ(σ�|τ�σ) + (1 − ε)P(σ�)]

)

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t + 1)

[
θ(t) + J

c
[σ ′(t) +

∑k
�=1 τ�σ�(t)

])
2 cosh

(
β
[
θ(t) + J

c
[σ ′(t) +

∑k
�=1 τ�σ�(t)

]) , (56)

Q(σ|σ′) =
∞∑

k=0

k + 1

c
p(k + 1)

( k∏
�=1

∑
τ�=±1

1

2
[1 + ητ�]

∑
σ�

[εQ(σ�|τ�σ) + (1 − ε)P(σ�)]

)

×p0[σ(0)]
tm−1∏
t=0

exp
(
βσ(t + 1)

[
θ(t) + J

c
[σ ′(t) +

∑k
�=1 τ�σ�(t)

])
2 cosh

(
β
[
θ(t) + J

c

[
σ ′(t) +

∑k
�=1 τ�σ�(t)

]) , (57)

with σ′ ∈ {−1, 1}tm . Equations (56) and (57) can be solved numerically by iteration. The
reduced order parameter function P(σ) is the disorder-averaged probability of finding a single-
spin trajectory σ = (σ (0), . . . , σ (t), . . . , σ (tm)) with zero external fields. Therefore, the
magnetization is given by

m(t) =
∑
σ

σ(t)P(σ). (58)

Figure 4 shows a comparison between theory and numerical simulations with respect to the
time evolution of the magnetization m(t) on a regular symmetric sparse graph, i.e. ε = 1 and
the degree distribution is p(k) = δk,c. The theoretical results are in good agreement with the

12
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numerical simulations. In the case ε = 1, the numerical analysis in fact simplifies slightly:
since (57) no longer involves P(σ), one can first solve (57) for Q(σ|σ′), and then substitute
the solution into (56) to obtain P(σ).

5.2. Approximate stationary solutions for fully symmetric connectivity

We next consider approximate stationary solutions of our macroscopic equations. Detailed
balance holds only for ε = 1. Since we here discuss dynamics with parallel updates, the
equilibrium state for ε = 1 does not have a Boltzmann form but involves Peretto’s pseudo-
Hamiltonian [52]. In the equilibrium state initial conditions are required to be irrelevant;
therefore, we may shift the initial and final times to −∞ and ∞, respectively. We also choose
zero external fields, θ(t) = 0. To find approximate stationary solutions, we propose the
following ansatz:

P(σ|θ′) =
∫

dhP(h)
∏

t

eβσ(t+1)[h+θ ′(t)]

2 cosh(β[h + θ ′(t)])
, (59)

Q(σ|θ′) =
∫

dhQ(h)
∏

t

eβσ(t+1)[h+θ ′(t)]

2 cosh(β[h + θ ′(t)])
, (60)

where P(h) denotes an effective local field distribution, and Q(h) denotes an effective cavity
field distribution [4]. Substituting this ansatz into the right-hand sides of (34) and (35) results
for large c in (see appendix C for details)

P(σ|θ′) =
∫

dh

{ ∞∑
k=0

p(k)

( k∏
�=1

∫
dh� dJ�p̃(J�)Q(h�)

)

× δ

(
h − 1

β

k∑
�=1

tanh−1

[
(tanh βh�)

(
tanh

βJ

c

)])}

×
∏

t

eβσ(t+1)[h+θ ′(t)]

2 cosh(β[h + θ ′(t)])
(61)

Q(σ|θ′) =
∫

dh

{ ∞∑
k=0

k + 1

c
p(k + 1)

( k∏
�=1

∫
dh� dJ� p̃(J�)Q(h�)

)

× δ

(
h − 1

β

k∑
�=1

tanh−1

[
(tanh βh�)

(
tanh

βJ

c

)])}

×
∏

t

eβσ(t+1)[h+θ ′(t)]

2 cosh(β[h + θ ′(t)])
(62)

Comparing (61), (59) to (62), (60) then implies the following relationships for the effective
field distributions P(h) and Q(h):

P(h) =
∞∑

k=0

p(k)

( k∏
�=1

∫
dh� dJ� p̃(J�)Q(h�)

)

×δ

(
h − 1

β

k∑
�=1

tanh−1

[
(tanh βh�)

(
tanh

βJ

c

)])
, (63)

13



J. Phys. A: Math. Theor. 42 (2009) 415001 K Mimura and A C C Coolen

Q(h) =
∞∑

k=0

k + 1

c
p(k + 1)

( k∏
�=1

∫
dh� dJ� p̃(J�)Q(h�)

)

× δ

(
h − 1

β

k∑
�=1

tanh−1

[
(tanh βh�)

(
tanh

βJ

c

)])
. (64)

Equation (64) has a closed form with respect to Q(h); its solution is substituted into (63) to
generate P(h). In the special case of Poissonian graphs, i.e. p(k) = e−cck/k!, we observe
that P(h) = Q(h), and we therefore have just one closed equation:

P(h) =
∑
k=0

e−cck

k!

( k∏
�=1

∫
dh� dJ� p̃(J�)P(h�)

)

× δ

(
h − 1

β

k∑
�=1

tanh−1

[(
tanh βh�

)(
tanh

βJ

c

)])
. (65)

We thereby recover for Poissonnian graphs the result of [44], which is, in turn, identical
to the replica symmetric equilibrium solution of the sequential dynamics version of the
model addressed here [5]. In [35], it has been shown that one expects the replica symmetric
equilibrium solutions of sequential and parallel dynamics to be identical.

6. Discussion

In this paper, we have applied the generating functional analysis technique to the dynamics
of Ising spin models on a finitely connected random graph with arbitrary degree distributions,
following the footsteps of [44] (which was limited to Poissonnian degree distributions). We
have first derived general exact equations to represent the dynamical properties of the system
in the infinite size limit. The introduction of arbitrary degree distributions was found to give
us very clear and intuitive interpretations of the macroscopic dynamics of finitely connected
Ising systems, in terms of macroscopic path probability distributions involving the evolution
of both the actual local field and the cavity field. We have already applied our theory to
error-correcting codes [49]. We next aim to apply the theory to other problems in the field of
information theory, as well as generalize it to include more complicated local field definitions
which will enable it to be used for the analysis of the dynamics of gene regulation systems.
Especially in the latter systems, where the graphs concerned are finitely connected and directed
but where the degree distributions are known to be far from Poissonnian, the ability to study
dynamics macroscopically for arbitrary degree distributions is vital.
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Appendix A. Calculation of the disorder average

We here calculate the disorder average. The term containing the disorder, which is the left-hand
side of (14), becomes

exp

[
− i

c

N∑
i=1

tm−1∑
t=0

ĥi(t)

N∑
j �=i

cij Jij σj (t)

]

= 1

Zc

∑
c

( N∏
i=1

N∏
j>i

p̂(cij )p̂(cji |cij )

∫
dJij p̃(Jij )

× exp

[
− i

c

tm−1∑
t=0

[ĥi(t)cij Jij σj (t) + ĥj (t)cjiJjiσi(t)]

])

×
( N∏

i=1

∫ 2π

0

dωi

2π
exp

[
iωi

(
ki −

N∑
j=1

cij

)])

= 1

Zc

( N∏
i=1

∫ 2π

0

dωi

2π
eiωiki

)( N∏
i=1

N∏
j>i

〈 ∑
cij ,cji

p̂(cij )p̂(cji |cij )

× exp

[
−i

J

c

tm−1∑
t=0

[ĥi(t)cij σj (t) + ĥj (t)cjiσi(t)] − i(ωicij + ωjcji)

]〉
J

)
.

(A.1)

We then have (14).

Appendix B. Derivation of the physical meaning of our order parameters

The physical meaning of the order parameter functions can be inferred by evaluating (36)
and (37). We first present the outline of the derivation of the physical meaning of Q(σ|θ′).
Equation (37) becomes

Q(σ|θ′)|saddle = 〈Q(σ|θ′)〉∗

=
∫ {dP dP̂ dQ dQ̂} eN
[{P,P̂ ,Q,Q̂}](∫ dĥ e−iθ′ ·ĥ 1

N

∑N
i=1 δσ,σi

δ(ĥ − ĥi ) e−iωi
)

∫ {dP dP̂ dQdQ̂} eN
[{P,P̂ ,Q,Q̂}]

=
[∫

{dP dP̂ dQ dQ̂} eN
[{P,P̂ ,Q,Q̂}]
]−1

×
[

1

N

N∑
i=1

∫
{dP dP̂ dQ dQ̂} eN�[{P,P̂ ,Q,Q̂}]

×
{ N∏

j=1

(∑
σj

∫
dhj dĥj

∫
dωj eiωj kj ρj (σj ,hj , ĥj ,θi , ωj )

)}

×
∫

dĥ e−iθ′ ·ĥδσ,σi
δ(ĥ − ĥi ) e−iωi

]
, (B.1)

where ρi(σi ,hi , ĥi ,θi , ωi) and �({P, P̂ ,Q, Q̂}) are defined as follows:

ρi(σi ,hi , ĥi ,θi , ωi) = 1

(2π)tm+1
e−iP̂ (σi ,ĥi ) e−iQ̂(σi ,ĥi ) e−iωi
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×p0[σi(0)]
tm−1∏
t=0

eiĥi (t)[hi (t)−θi (t)]+βσi (t+1)hi (t)

2 cosh[βhi(t)]
, (B.2)

�[{P, P̂ ,Q, Q̂}] = c

2
(ε − 2) +

c

2

∑
σ

∑
σ′

∫
dĥ dĥ′A(σ, ĥ;σ′, ĥ

′
)

+ i
∑
σ

∫
dĥ[P̂ (σ, ĥ)P (σ, ĥ) + Q̂(σ, ĥ)Q(σ, ĥ)]. (B.3)

The term in (B.1) that involves ω-integrations can be evaluated as follows:{ N∏
j=1

(∑
σj

∫
dhj dĥj dωj eiωj kj ρj (σj ,hj , ĥj ,θi , ωj )

)} ∫
dĥ e−iθ′ ·ĥδσ,σi

δ(ĥ − ĥi ) e−iωi

=
{ N∏

j �=i

(∑
σj

∫
dhj dĥj dωj eiωj kj ρj (σj ,hj , ĥj ,θi , ωj )

)}

×
∑
σi

∫
dhidĥ dωi eiωi(ki−1)ρi(σi ,hi , ĥ,θi + θ′, ωi)δσ,σi

=
{ N∏

j=1

(∑
σj

∫
dhj dĥj dωj eiωj kj ρj (σj ,hj , ĥj ,θi , ωj )

)}∣∣∣∣
ki→ki−1,θi→θi+θ′

.

(B.4)

Substituting (B.4) into (B.1) then gives us (37). Equation (36) can be obtained in a similar
way, since the difference is just the absence of the factor e−iωi .

Appendix C. Derivation of approximate stationary solutions

Equations (61) and (62) are obtained following the reasoning in [44]. We first derive (61),
using two specific identities. The first applies to σ ∈ {−1, 1}:

cosh[β(a + bσ)] = A eβBσ , (C.1)

with

A =
√

cosh[β(a + b)] cosh[β(a − b)], B = 1

2β
ln

cosh[β(a + b)]

cosh[β(a − b)]
. (C.2)

The second identity holds for σ ∈ {−1, 0, 1} and any function f (σ):

f (σ) = C eβDσ+βEσ 2
, (C.3)

with

C = f (0), D = 1

2β
ln

f (1)

f (−1)
, E = 1

2β
ln

f (1)f (−1)

f (0)2
. (C.4)

We abbreviate
∏

t

[
1
2

∑
σ(t)=±1 f (σ)

] = 〈f (σ)〉σ and substitute the ansatz (60) into the right-
hand side of (34) with ε = 1, which gives

P(σ|θ′) =
∞∑

k=0

p(k)

〈( k∏
�=1

∫
dJ� p̃(J�)

∫
dhQ(h)

∏
t

eβσ(t+1)[h+θ ′(t)]

cosh(β[h + θ ′(t)])

)

×
∏

t

exp
(
βσ(t + 1)

[
θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

])
2 cosh

(
β
[
θ ′(t) + 1

c

∑k
�=1 J�σ�(t)

]) 〉
σ
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=
∞∑

k=0

p(k)

( k∏
�=1

∫
dJ� p̃(J�)

∫
dhQ(h)

){∏
t

eβσ(t+1)[θ ′(t)−∑k
�=1 B�]∏k

�=1 A�

}

×
∏

t

〈
exp

(
β

∑k
�=1 σ�

[
h� + 1

c
J�{σ(t − 1) + σ(t + 1)}])

2 cosh
(
β
[
θ ′(t) + 1

c

∑k
�=1 J�σ�

]) 〉
σ1,...,σk

(C.5)

=
∞∑

k=0

p(k)

( k∏
�=1

∫
dJ� p̃(J�)

∫
dhQ(h)

)(∏
t

Ck,t e
1
2 βEk,t∏k

�=1 A�

)

×
∏

t

eβσ(t+1)[θ(t)−∑k
�=1 B�+ 1

2 Dk,t + 1
2 Dk,t+2+ 1

2 Fk,t σ (t−1)] (C.6)

=
∫

dh

{ ∞∑
k=0

p(k)

( k∏
�=1

∫
dh� dJ� p̃(J�)Q(h�)

) ∏
t

eβσ(t+1)[h+θ ′(t)]

2 cosh
(
β
[
h + θ ′(t)

])
× δ

(
h − 2

βc

k∑
�=1

J� tanh βJ� +
1

2β

k∑
�=1

ln
cosh

(
β
[
h� + 1

c
J�

])
cosh(β[h� − 1

c
J�])

)}

=
∫

dh

{ ∞∑
k=0

p(k)

( k∏
�=1

∫
dh� dJ� p̃(J�)Q(h�)

) ∏
t

eβσ(t+1)[h+θ ′(t)]

2 cosh(β[h + θ ′(t)])

× δ

(
h − 1

β

k∑
�=1

tanh−1

[
(tanh βh�)

(
tanh

βJ

c

)])}
(C.7)

where we have put

A� =
√

cosh

(
β

[
h� +

1

c
J�

])
cosh

(
β

[
h� − 1

c
J�

])
, (C.8)

B� = 1

2β
ln

cosh
(
β
[
h� + 1

c
J�

])
cosh(β[h� − 1

c
J�])

, (C.9)

Ck,t =
〈

exp
(
β

∑k
�=1 σ�h�

)
2 cosh

(
β
[
θ ′(t) + 1

c

∑k
�=1 J�σ�

])〉
σ1,...,σk

, (C.10)

Dk,t = 1

2β
ln

〈 exp(β
∑k

�=1 σ�[h�+ 2
c
J�])

2 cosh(β[θ ′(t)+ 1
c

∑k
�=1 J�σ�])

〉
σ1,...,σk〈 exp(β

∑k
�=1 σ�[h�− 2

c
J�])

2 cosh(β[θ ′(t)+ 1
c

∑k
�=1 J�σ�])

〉
σ1,...,σk

, (C.11)

Ek,t = 1

2β
ln

〈 exp(β
∑k

�=1 σ�[h�+ 2
c
J�])

2 cosh(β[θ ′(t)+ 1
c

∑k
�=1 J�σ�])

〉
σ1,...,σk

〈 exp(β
∑k

�=1 σ�[h�− 2
c
J�])

2 cosh(β[θ ′(t)+ 1
c

∑k
�=1 J�σ�])

〉
σ1,...,σk〈 exp(β

∑k
�=1 σ�h�)

2 cosh(β[θ ′(t)+ 1
c

∑k
�=1 J�σ�])

〉2
σ1,...,σk

. (C.12)

To obtain (C.5) and (C.6) we have used (C.1) and (C.3), respectively. Equation (62) can be
derived in the same way.
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[40] Skantzos N S, Pérez Castillo Isaac and Hatchett J P L 2005 Phys. Rev. E 72 066127
[41] Semerjian G and Cugliandolo L F 2003 Europhys. Lett. 61 2, 247
[42] Semerjian G, Cugliandolo L F and Montanari A 2004 J. Stat. Phys. 115 493
[43] Semerjian G and Weigt M 2004 J. Phys. A: Math. Gen. 37 5525
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